摘 要:對(duì)220萬(wàn)t·a -1 連續(xù)重整裝置催化劑再生系統(tǒng)多次發(fā)生的催化劑循環(huán)不暢問題進(jìn)行深入分析,并結(jié)合裝置實(shí)際情況,提出了針對(duì)不同原因引起的催化劑循環(huán)不暢的處理方法。采取優(yōu)化除塵操作、調(diào)整再生循環(huán)系統(tǒng)相關(guān)控制參數(shù)等手段,可減少催化劑粉塵對(duì)再生系統(tǒng)的影響。
1 裝置簡(jiǎn)介
中石油某煉廠 220 萬(wàn) t·a -1 連續(xù)催化重整裝置采用美國(guó) UOP 公司轉(zhuǎn)lijishu,以上游輕烴回收裝置提供的精制石腦油為原料生產(chǎn)高辛烷值汽油組分,同時(shí)副產(chǎn)含氫氣體、C5 組分(液化氣)等產(chǎn)品。重整反應(yīng)部分采用 UOP 超低壓連續(xù)重整工藝,反應(yīng)器 2+2 布置。催化劑再生部分采用 UOP 第三代催化劑再生工藝“CycleMax”, 其中分離料斗氯吸附區(qū)采用了 UOP #新的 ChlorsorbTM 氯吸收技術(shù)。UOP第三代“CycleMax”再生工藝克服了以往設(shè)備材料要求高、工藝流程復(fù)雜、需要專門的高純氫還原、催化劑提升系統(tǒng)設(shè)備多、催化劑磨損大等缺點(diǎn),催化劑再生及反應(yīng)性能的表現(xiàn)良好[1] 。
2 催化劑循環(huán)不暢的現(xiàn)象與處理
催化劑循環(huán)是再生系統(tǒng)的核心技術(shù)。經(jīng)過反應(yīng)后的重整催化劑在重力作用下,從四反底部流動(dòng)至待生劑提升閥組,利用氮?dú)猓ㄟ^提升管提升至分離料斗。在分離料斗中除去粉塵及破損催化劑顆粒后,靠重力依次經(jīng)過催化劑再生器、氮封罐,再經(jīng)閉鎖料斗底部再生劑提升器,用重整氫氣提升至地衣反應(yīng)器頂部還原段。在還原段將氧化態(tài)的催化劑用重整氫氣還原至還原態(tài)后,再依靠重力,下流至地衣反應(yīng)器進(jìn)行催化重整反應(yīng)。
該裝置于 2019 年 6 月 8 日開始,頻繁出現(xiàn)催化劑再生系統(tǒng)循環(huán)不暢、第四反應(yīng)器底部下料困難、待生劑差壓控制器 PDIC2048 無(wú)法正常建立等情況,甚至導(dǎo)致再生系統(tǒng)停工,F(xiàn)場(chǎng)敲擊四反底部下料管,聲音呈清脆狀態(tài),表明催化劑未能從四反底部流出,下料管呈空腔狀態(tài)。初步分析為系統(tǒng)內(nèi)粉塵淘析不徹底,導(dǎo)致四反底部堵塞嚴(yán)重,下料不暢。為此,采取了以下措施,疏通四反底部的下料管線,并加大粉塵的淘析力度 , 減少下料不暢現(xiàn)象發(fā)生。
1)間歇性提高、降低四反底部的反吹氮?dú)饬,?duì)四反底部形成脈沖反吹效果;同時(shí)現(xiàn)場(chǎng)手動(dòng)反復(fù)開關(guān) V 型隔離閥,敲擊震動(dòng)下料管線進(jìn)行疏通。
2)將 除 塵 風(fēng) 總 量 由 7300Nm 3 ·h -1 提 高 至7400~7600 Nm 3 ·h -1 ,加強(qiáng)粉塵淘析力度,保證催化劑粉塵顆粒度在 30% 以上。
3) 將四反底部待生的提升二次氣與置換氣的差壓 PDIC2025,由 15 kPa 提高至 20kPa,增強(qiáng)二次氣對(duì)四反底部的反吹效果,降低四反底部催化劑堵塞的概率。
4) 將二反、四反底部的吹掃置換氣溫度,由175℃提升至 180℃ , 提高吹掃置換效果,防止烴類在催化劑表面凝結(jié)造成催化劑結(jié)塊,堵塞下料管。采取以上措施后,催化劑循環(huán)不暢的現(xiàn)象有較大改善,但未能徹底解決,有時(shí)仍會(huì)出現(xiàn)四反底部下料管線存有催化劑,加大待生劑提升氣量仍無(wú)法建立正常的提升差壓等情況。對(duì)催化劑再生系統(tǒng)DCS 畫面的相關(guān)參數(shù)趨勢(shì)圖進(jìn)行全面排查,發(fā)現(xiàn)待生劑提升管差壓 PDIC2048 無(wú)法建立正常差壓時(shí),伴隨有除塵風(fēng)機(jī)出口流量 FIC2024 的躍升,分離料斗 D203 緩沖區(qū)與吸附區(qū)差壓 PDI2018 的數(shù)值也有明顯增加的現(xiàn)象。
在現(xiàn)場(chǎng)核對(duì)待生劑提升管的差壓變送器PDIC2048 的低壓端取壓點(diǎn)位置,引壓管處于除塵風(fēng)機(jī)出口管線進(jìn)分離料斗前位置。從歷史趨勢(shì)來(lái)看,若除塵風(fēng)機(jī)出口風(fēng)量突增,分離料斗差壓PDI2018超過100 kPa,極易造成四反底部提升不暢,PDIC2048 差壓無(wú)法建立。由此推測(cè),造成催化循環(huán)中斷的間接原因,是除塵風(fēng)機(jī)出口流量 FIC2024突增,造成分離料斗壓力即待生劑提升管線差壓PDIC2048 的低壓端壓力過高,待生劑提升管線的壓降不足,使得催化劑提升失去“動(dòng)力”。后期經(jīng)過多次驗(yàn)證,當(dāng)發(fā)生催化劑循環(huán)不暢時(shí),手動(dòng)將除塵風(fēng)機(jī)出口流量控制閥 FV2024 的閥位降低,直接降低除塵風(fēng)機(jī)出口總流量,從而間接降低分離料斗的壓力,能有效解決提升管差壓無(wú)法建立的問題。
3 除塵風(fēng)機(jī)出口流量突增的原因分析與處理
催化劑吹塵系統(tǒng)吹塵的流程為:從分離料斗抽出的工藝氣體(氮?dú)猓┻M(jìn)入粉塵收集器 S204,由外向內(nèi)經(jīng)過圓形的濾芯表面(共計(jì) 8 組),然后由濾芯中部流出罐體頂部出口。在工藝氣體中攜帶的固體粉塵顆粒,會(huì)在粉塵收集器表面形成一層濾餅并造成壓降[2] 。在設(shè)定的差壓或者時(shí)間控制下,依次啟動(dòng) 8 路反吹電磁閥,將非永久性濾餅吹落。濾棒的反吹采用脈沖式反吹方法,消耗極少的再生專用氮?dú)饧纯蓪?shí)現(xiàn)反吹的目的[3] 。每個(gè)脈沖反吹的持續(xù)時(shí)間設(shè)定為 1s,反吹下來(lái)的催化劑粉塵沉積在罐體底部,定期
排出回收。經(jīng)過粉塵收集器過濾后的潔凈氣體由粉塵收集器 S204 上部排出,分別進(jìn)入提升風(fēng)機(jī)和除塵風(fēng)機(jī)。其中除塵風(fēng)機(jī)出口的一股氣體作為淘析氣返回分離料斗頂部,用于淘析待生催化劑中的粉塵。
調(diào)取除塵風(fēng)機(jī)的出口流量與再生專用氮?dú)獾臍v史趨勢(shì)圖可知,過量的再生專用氮?dú)膺M(jìn)入除塵系統(tǒng),導(dǎo)致再生專用氮?dú)饨鐓^(qū)的壓力 PI9046 快速降低,同時(shí)引起除塵風(fēng)機(jī)出口流量突增,造成分離料斗壓力增高。
排查粉塵收集器 8 路反吹電磁閥的動(dòng)作情況,發(fā)現(xiàn)第 5、7 路電磁閥脈沖的反吹開啟時(shí)間過長(zhǎng),達(dá)到 3s。更換異常閥門后,除塵風(fēng)機(jī)的出口流量(FIC2024)及再生專用氮界區(qū)的壓力(PI9046)未再出現(xiàn)大幅波動(dòng)現(xiàn)象,再生系統(tǒng)未再發(fā)生催化劑循環(huán)中斷、四反底部下料不暢的情況。
4 結(jié)論
當(dāng)再生系統(tǒng)出現(xiàn)催化劑循環(huán)不暢的現(xiàn)象時(shí),要全面考慮各方面因素,判斷其根本原因并采取相應(yīng)的應(yīng)對(duì)措施。日常生產(chǎn)中,要保證足夠的除塵風(fēng)量,定期送檢分析催化劑粉塵,保證顆粒度不低于30%,以防止系統(tǒng)內(nèi)粉塵累計(jì)造成管線設(shè)備堵塞。除塵系統(tǒng)的正常運(yùn)行是保證催化劑循環(huán)順暢的關(guān)鍵。要定期檢查粉塵收集器的運(yùn)行情況,避免因反吹閥門開啟過大,造成分離料斗壓力過高引起的催化劑循環(huán)中斷。另外,分離料斗壓力過高會(huì)造成催化劑流態(tài)化,加劇催化劑磨損,不利于裝置長(zhǎng)周期運(yùn)行。